SLLS206H - MAY 1995 - REVISED JUNE 2002

- Single Chip With Easy Interface Between UART and Serial-Port Connector of IBM<sup>™</sup> PC/AT and Compatibles
- Meet or Exceed the Requirements of ANSI Standard TIA/EIA-232-F and ITU Recommendation V.28
- Designed to Support Data Rates up to 120 kbit/s
- Pinout Compatible With SN75C185 and SN75185

| ,                    | DB, DW, N, OR PW PACKAGE<br>PP VIEW) |
|----------------------|--------------------------------------|
| V <sub>DD</sub> [ 1  | 20 ] V <sub>CC</sub>                 |
| RA1 [ 2              | 19 ] RY1                             |
| RA2 [ 3              | 18 ] RY2                             |
| RA3 [ 4              | 17 ] RY3                             |
| DY1 [ 5              | 16 ] DA1                             |
| DY2 [ 6              | 15 ] DA2                             |
| RA4 [ 7              | 14 ] RY4                             |
| DY3 [ 8              | 13 ] DA3                             |
| RA5 [ 9              | 12 ] RY5                             |
| V <sub>SS</sub> [ 10 | 11 ] GND                             |

#### description

The GD65232 and GD75232 combine three drivers and five receivers from the Texas Instruments trade-standard SN75188 and SN75189 bipolar quadruple drivers and receivers, respectively. The pinout matches the flow-through design of the SN75C185 to decrease the part count, reduce the board space required, and allow easy interconnection of the UART and serial-port connector of an IBM<sup>™</sup> PC/AT and compatibles. The bipolar circuits and processing of the GD65232 and GD75232 provide a rugged, low-cost solution for this function at the expense of quiescent power and external passive components relative to the SN75C185.

The GD65232 and GD75232 comply with the requirements of the TIA/EIA-232-F and ITU (formerly CCITT) V.28 standards. These standards are for data interchange between a host computer and a peripheral at signaling rates up to 20 kbit/s. The switching speeds of these devices are fast enough to support rates up to 120 kbit/s with lower capacitive loads (shorter cables). Interoperability at the higher signaling rates cannot be expected unless the designer has design control of the cable and the interface circuits at both ends. For interoperability at signaling rates up to 120 kbit/s, use of ANSI TIA/EIA-423-B (ITU V.10) and TIA/EIA-422-B (ITU V.11) standards is recommended.

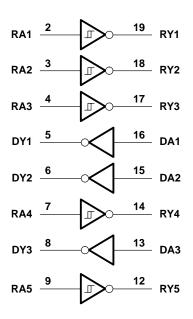
| TA            | PACKAG                        | GE†           | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |
|---------------|-------------------------------|---------------|--------------------------|---------------------|
|               | PDIP – N Tube GD65232N GD6523 |               | GD65232N                 |                     |
|               | SOIC - DW                     | Tube          | GD65232DW                | GD65232             |
| –40°C to 85°C | 3010 - 010                    | Tape and reel | GD65232DWR               | GD05252             |
|               | SSOP – DB                     | Tape and reel | GD65232DBR               | GD65232             |
|               | TSSOP – PW                    | Tape and reel | GD65232PWR               | GD65232             |
|               | PDIP – N                      | Tube          | GD75232N                 | GD75232N            |
|               | SOIC - DW                     | Tube          | GD75232DW                | GD75232             |
| 0°C to 70°C   | 3010 - 010                    | Tape and reel | GD75232DWR               | GD75252             |
|               | SSOP – DB                     | Tape and reel | GD75232DBR               | GD75232             |
|               | TSSOP – PW                    | Tape and reel | GD75232PWR               | GD75232             |

#### **ORDERING INFORMATION**

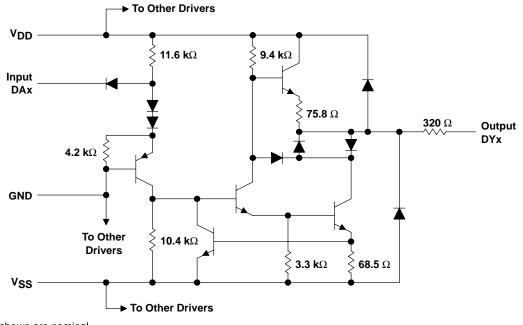
<sup>†</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


IBM is a trademark of International Business Machines Corporation.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

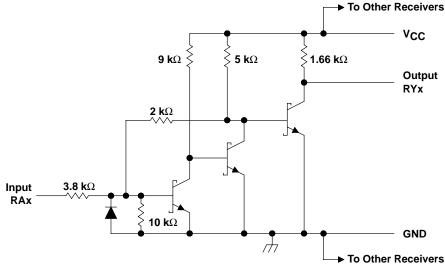



SLLS206H - MAY 1995 - REVISED JUNE 2002

#### logic diagram (positive logic)



#### schematic (each driver)




Resistor values shown are nominal.



SLLS206H - MAY 1995 - REVISED JUNE 2002

#### schematic (each receiver)



Resistor values shown are nominal.

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage (see Note 1): V <sub>CC</sub>                      | 10 V          |
|-------------------------------------------------------------------|---------------|
|                                                                   | 45.V          |
| V <sub>DD</sub>                                                   |               |
| V <sub>SS</sub>                                                   | –15 V         |
| Input voltage range, V <sub>I</sub> : Driver                      | –15 V to 7 V  |
| Receiver                                                          | –30 V to 30 V |
| Driver output voltage range, V <sub>O</sub>                       |               |
| Receiver low-level output current, IOL                            |               |
| Package thermal impedance, $\theta_{JA}$ (see Note 2): DB package |               |
|                                                                   | 58°C/W        |
| N package                                                         | 69°C/W        |
| PW package                                                        |               |
| Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds      | 260°C         |
| Storage temperature range, T <sub>stg</sub>                       |               |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to the network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51-7.



SLLS206H - MAY 1995 - REVISED JUNE 2002

#### recommended operating conditions

|                 |                                             |         | MIN | NOM | MAX  | UNIT |
|-----------------|---------------------------------------------|---------|-----|-----|------|------|
| V <sub>DD</sub> | Supply voltage (see Note 3)                 |         | 7.5 | 9   | 15   | V    |
| VSS             | V <sub>SS</sub> Supply voltage (see Note 3) |         |     |     | -15  | V    |
| VCC             | Supply voltage (see Note 3)                 |         | 4.5 | 5   | 5.5  | V    |
| VIH             | High-level input voltage (driver only)      |         | 1.9 |     |      | V    |
| VIL             | Low-level input voltage (driver only)       |         |     |     | 0.8  | V    |
| 1               |                                             | river   |     |     | -6   | ~    |
| ЮН              | High-level output current Re                | eceiver |     |     | -0.5 | mA   |
| 1               |                                             | river   |     |     | 6    | mA   |
| IOL             | Low-level output current Re                 | eceiver |     |     | 16   | mA   |
| TA              | Operating free-air temperature              | D65232  | -40 |     | 85   | °C   |
|                 | GD75232                                     |         | 0   |     | 70   | 0    |

NOTE 3: When powering up the GD65232 and GD75232, the following sequence should be used:

1. V<sub>SS</sub> 2. GND

3. V<sub>DD</sub>

4. VCC

5. I/Os

Applying V<sub>CC</sub> to the device before V<sub>DD</sub> may allow large currents to flow, causing damage to the device. When powering down the GD65232 and GD75232, the reverse sequence should be used.

#### supply currents over recommended operating free-air temperature range

|     | PARAMETER                           | TEST CONDITIONS   VDD = 9 V. VSS = -9 V |                       |                         |                         | MIN N                | ЛАХ     | UNIT                    |                  |  |     |  |
|-----|-------------------------------------|-----------------------------------------|-----------------------|-------------------------|-------------------------|----------------------|---------|-------------------------|------------------|--|-----|--|
|     |                                     |                                         |                       | V <sub>DD</sub> = 9 V,  | $V_{SS} = -9 V$         |                      | 15      |                         |                  |  |     |  |
|     |                                     | All inputs at 1.9 V,                    | No load               | V <sub>DD</sub> = 12 V, | $V_{SS} = -12 V$        |                      | 19      |                         |                  |  |     |  |
| 100 | Supply current from V               |                                         |                       | V <sub>DD</sub> = 15 V, | V <sub>SS</sub> = -15 V |                      | 25      | mA                      |                  |  |     |  |
| IDD |                                     |                                         |                       | V <sub>DD</sub> = 9 V,  | $V_{SS} = -9 V$         |                      | 4.5     | ШA                      |                  |  |     |  |
|     |                                     | All inputs at 0.8 V,                    | No load               | V <sub>DD</sub> = 12 V, | $V_{SS} = -12 V$        |                      | 5.5     |                         |                  |  |     |  |
|     |                                     |                                         |                       | V <sub>DD</sub> = 15 V, | V <sub>SS</sub> = -15 V |                      | 9       |                         |                  |  |     |  |
|     |                                     |                                         |                       | V <sub>DD</sub> = 9 V,  | $V_{SS} = -9 V$         |                      | -15     |                         |                  |  |     |  |
|     |                                     | All inputs at 1.9 V,                    | All inputs at 1.9 V,  | All inputs at 1.9 V,    | All inputs at 1.9 V,    | All inputs at 1.9 V, | No load | V <sub>DD</sub> = 12 V, | $V_{SS} = -12 V$ |  | -19 |  |
| 100 | Supply current from VSS             |                                         |                       | V <sub>DD</sub> = 15 V, | V <sub>SS</sub> = -15 V |                      | -25     | mA                      |                  |  |     |  |
| ISS | Supply current norm vSS             |                                         |                       | V <sub>DD</sub> = 9 V,  | $V_{SS} = -9 V$         | -                    | -3.2    | ШA                      |                  |  |     |  |
|     |                                     | All inputs at 0.8 V,                    | No load               | V <sub>DD</sub> = 12 V, | $V_{SS} = -12 V$        | -                    | -3.2    |                         |                  |  |     |  |
|     |                                     |                                         |                       | V <sub>DD</sub> = 15 V, | $V_{SS} = -15 V$        | -                    | -3.2    |                         |                  |  |     |  |
| 100 |                                     |                                         | V <sub>CC</sub> = 5 V | GD65232                 |                         | 38                   | mA      |                         |                  |  |     |  |
| lcc | Supply current from V <sub>CC</sub> | All inputs at 5 V,                      | No load,              | •CC = 2 v               | GD75232                 |                      | 30      | IIIA                    |                  |  |     |  |



SLLS206H - MAY 1995 - REVISED JUNE 2002

#### DRIVER SECTION

# electrical characteristics over recommended operating free-air temperature range, $V_{DD}$ = 9 V, $V_{SS}$ = -9 V, $V_{CC}$ = 5 V (unless otherwise noted)

|                 | PARAMETER                                            | TEST CONDITIONS          |                     |                       | MIN  | TYP  | MAX   | UNIT |
|-----------------|------------------------------------------------------|--------------------------|---------------------|-----------------------|------|------|-------|------|
| VOH             | High-level output voltage                            | V <sub>IL</sub> = 0.8 V, | $R_L = 3 k\Omega$ , | See Figure 1          | 6    | 7.5  |       | V    |
| VOL             | Low-level output voltage (see Note 4)                | V <sub>IH</sub> = 1.9 V, | $R_L = 3 k\Omega$ , | See Figure 1          |      | -7.5 | -6    | V    |
| ЧΗ              | High-level input current                             | V <sub>I</sub> = 5 V,    | See Figure 2        |                       |      |      | 10    | μA   |
| ۱ <sub>IL</sub> | Low-level input current                              | $V_{I} = 0,$             | See Figure 2        |                       |      |      | -1.6  | mA   |
| IOS(H)          | High-level short-circuit output current (see Note 5) | V <sub>IL</sub> = 0.8 V, | $V_{O} = 0,$        | See Figure 1          | -4.5 | -12  | -19.5 | mA   |
| IOS(L)          | Low-level short-circuit output current               | V <sub>IH</sub> = 2 V,   | $V_{O} = 0,$        | See Figure 1          | 4.5  | 12   | 19.5  | mA   |
| r <sub>o</sub>  | Output resistance (see Note 6)                       | $V_{CC} = V_{DD} =$      | $V_{SS} = 0$ ,      | $V_{O} = -2 V$ to 2 V | 300  |      |       | Ω    |

NOTES: 4. The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only (e.g., if –10 V is maximum, the typical value is a more negative voltage).

5. Output short-circuit conditions must maintain the total power dissipation below absolute maximum ratings.

6. Test conditions are those specified by TIA/EIA-232-F and as listed above.

#### switching characteristics, V<sub>CC</sub> = 5 V, V<sub>DD</sub> = 12 V, V<sub>SS</sub> = -12 V, T<sub>A</sub> = $25^{\circ}$ C

|                  | PARAMETER                                            | TEST CONDITIONS                           |                           |                         | MIN TYP MAX |     |     | UNIT |
|------------------|------------------------------------------------------|-------------------------------------------|---------------------------|-------------------------|-------------|-----|-----|------|
| <sup>t</sup> PLH | Propagation delay time, low- to high-level output    | $R_L = 3 k\Omega$ to 7 kΩ,                | C <sub>L</sub> = 15 pF,   | See Figure 3            |             | 315 | 500 | ns   |
| <sup>t</sup> PHL | Propagation delay time,<br>high- to low-level output | $R_L = 3 k\Omega$ to 7 k $\Omega$ ,       | C <sub>L</sub> = 15 pF,   | See Figure 3            |             | 75  | 175 | ns   |
| +                | Transition time,                                     | $R_{I} = 3 k\Omega \text{ to } 7 k\Omega$ | C <sub>L</sub> = 15 pF,   | See Figure 3            |             | 60  | 100 | ns   |
| <sup>t</sup> TLH | low- to high-level output                            | $K_{L} = 3 K_{22} 10 7 K_{22}$            | C <sub>L</sub> = 2500 pF, | See Figure 3 and Note 7 |             | 1.7 | 2.5 | μs   |
|                  | Transition time,                                     | $B_{1} = 2 k_{0} t_{0} T_{k_{0}}$         | C <sub>L</sub> = 15 pF,   | See Figure 3            |             | 40  | 75  | ns   |
| <sup>t</sup> THL | high- to low-level output                            | $R_L = 3 k\Omega$ to 7 k $\Omega$         | C <sub>L</sub> = 2500 pF, | See Figure 3 and Note 7 |             | 1.5 | 2.5 | μs   |

NOTE 7: Measured between ±3-V and ±3-V points of the output waveform (TIA/EIA-232-F conditions); all unused inputs are tied either high or low.



SLLS206H - MAY 1995 - REVISED JUNE 2002

#### **RECEIVER SECTION**

#### electrical characteristics over recommended operating conditions (unless otherwise noted)

|                   | PARAMETER                                                       | TEST CONDITIONS                       |                          |              | MIN     | TYP† | MAX  | UNIT |    |
|-------------------|-----------------------------------------------------------------|---------------------------------------|--------------------------|--------------|---------|------|------|------|----|
| \/                |                                                                 | T <sub>A</sub> = 25°C,                | See Figure 5             |              | 1.75    | 1.9  | 2.3  | V    |    |
| VIT+              | Positive-going input threshold voltage                          | $T_A = 0^{\circ}C$ to $70^{\circ}C$ , | See Figure 5             |              | 1.55    |      | 2.3  | v    |    |
| V <sub>IT</sub> _ | Negative-going input threshold voltage                          |                                       |                          |              | 0.75    | 0.97 | 1.25 | V    |    |
| V <sub>hys</sub>  | Input hysteresis voltage (V <sub>IT+</sub> – V <sub>IT–</sub> ) |                                       |                          |              | 0.5     |      |      | V    |    |
| Varia             | Link lovel output voltogo                                       | 1au 0.5 mA                            | V <sub>IH</sub> = 0.75 V |              | 2.6     | 4    | 5    | V    |    |
| Vон               | High-level output voltage                                       | I <sub>OH</sub> = -0.5 mA             | Inputs open              |              | 2.6     |      |      | v    |    |
| VOL               | Low-level input voltage                                         | I <sub>OL</sub> = 10 mA,              | V <sub>I</sub> = 3 V     |              |         | 0.2  | 0.45 | V    |    |
|                   |                                                                 |                                       |                          | GD65232      | 3.6     |      | 11   |      |    |
| Iн                | High-level input current                                        | $v_{1} = 25 v_{2}$                    | V <sub>I</sub> = 25 V,   | See Figure 5 | GD75232 | 3.6  |      | 8.3  | mA |
|                   |                                                                 | V <sub>I</sub> = 3 V,                 | See Figure 5             |              | 0.43    |      |      |      |    |
|                   |                                                                 |                                       |                          | GD65232      | -3.6    |      | -11  |      |    |
| ۱ <sub>IL</sub>   | Low-level output current                                        | V <sub>I</sub> = -25 V,               | See Figure 5             | GD75232      | -3.6    |      | -8.3 | mA   |    |
|                   |                                                                 | $V_{  } = -3 V,$                      | See Figure 5             | -            | -0.43   |      |      |      |    |
| IOS               | Short-circuit output current                                    | See Figure 4                          |                          |              |         | -3.4 | -12  | mA   |    |

<sup>†</sup> All typical values are at  $T_A = 25^{\circ}C$ ,  $V_{CC} = 5$  V,  $V_{DD} = 9$  V, and  $V_{SS} = -9$  V.

## switching characteristics, V\_{CC} = 5 V, V\_{DD} = 12 V, V\_{SS} = –12 V, T\_A = 25°C

| PARAMETER        |                                                   | TEST CONDITIONS         |                                                       |              | MIN | TYP | MAX | UNIT |
|------------------|---------------------------------------------------|-------------------------|-------------------------------------------------------|--------------|-----|-----|-----|------|
| <sup>t</sup> PLH | Propagation delay time, low- to high-level output |                         |                                                       |              |     | 107 | 250 | ns   |
| <sup>t</sup> PHL | Propagation delay time, high- to low-level output | C <sub>L</sub> = 50 pF, | $R_1 = 5 k\Omega$ ,                                   | See Figure 6 |     | 42  | 150 | ns   |
| <sup>t</sup> TLH | Transition time, low- to high-level output        |                         | $R_{L} = 5 \text{ Ks2},$                              |              |     | 175 | 350 | ns   |
| <sup>t</sup> THL | Transition time, high- to low-level output        |                         |                                                       |              |     | 16  | 60  | ns   |
| <sup>t</sup> PLH | Propagation delay time, low- to high-level output |                         |                                                       |              |     | 100 | 160 | ns   |
| <sup>t</sup> PHL | Propagation delay time, high- to low-level output | C 15 pE                 | $\mathbf{P}_{\mathbf{k}} = 1 \mathbf{E} \mathbf{k} 0$ |              |     | 60  | 100 | ns   |
| <sup>t</sup> TLH | Transition time, low- to high-level output        | C <sub>L</sub> = 15 pF, | $R_{L} = 1.5 \text{ ks}_{2}$                          | See Figure 6 |     | 90  | 175 | ns   |
| <sup>t</sup> THL | Transition time, high- to low-level output        |                         |                                                       |              |     | 15  | 50  | ns   |



SLLS206H - MAY 1995 - REVISED JUNE 2002

#### PARAMETER MEASUREMENT INFORMATION

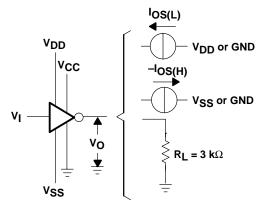



Figure 1. Driver Test Circuit for V<sub>OH</sub>, V<sub>OL</sub>, I<sub>OS(H)</sub>, and I<sub>OS(L)</sub>

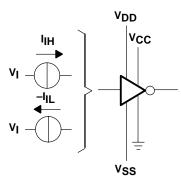
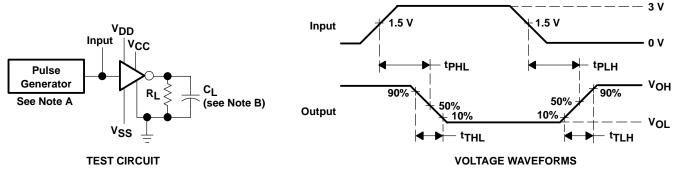
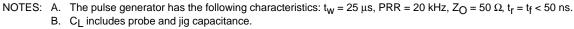





Figure 2. Driver Test Circuit for IIH and IIL









SLLS206H - MAY 1995 - REVISED JUNE 2002

#### PARAMETER MEASUREMENT INFORMATION

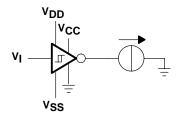



Figure 4. Receiver Test Circuit for IOS

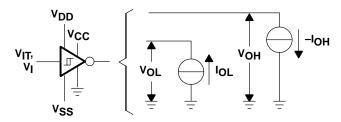
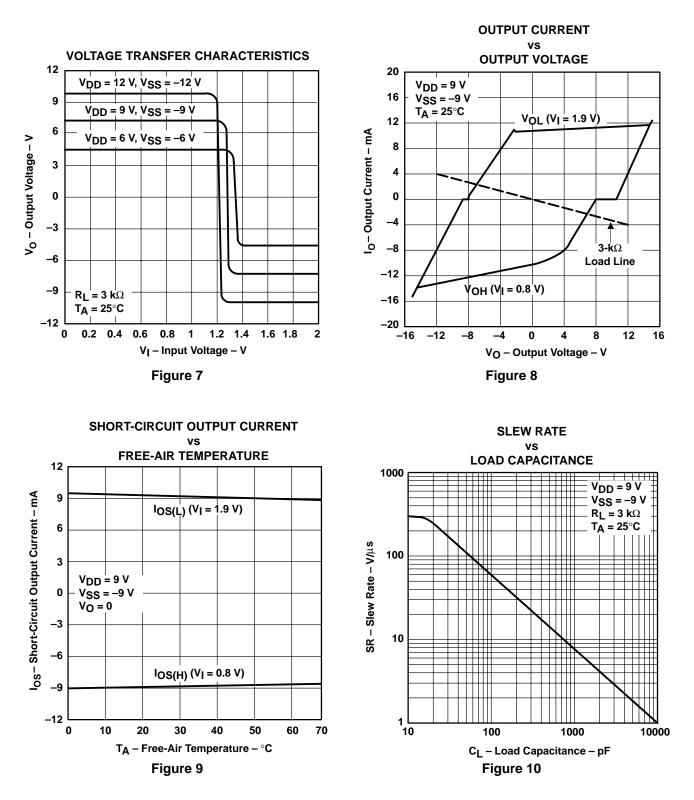




Figure 5. Receiver Test Circuit for  $V_{IT}$ ,  $V_{OH}$ , and  $V_{OL}$ 

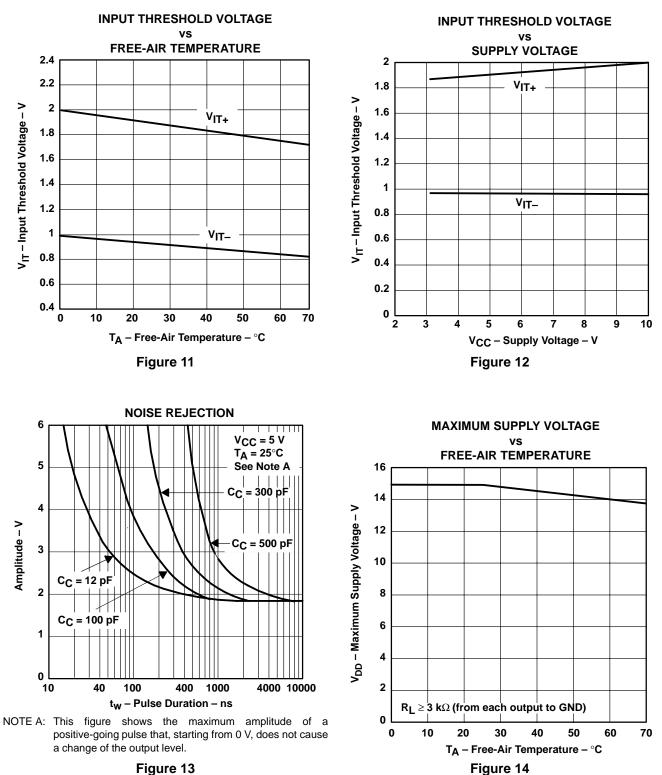



NOTES: A. The pulse generator has the following characteristics:  $t_W = 25 \ \mu$ s, PRR = 20 kHz,  $Z_O = 50 \ \Omega$ ,  $t_f = t_f < 50 \ ns$ . B. CL includes probe and jig capacitance.

#### Figure 6. Receiver Propagation and Transition Times



SLLS206H - MAY 1995 - REVISED JUNE 2002


### **TYPICAL CHARACTERISTICS**



#### **DRIVER SECTION**



SLLS206H - MAY 1995 - REVISED JUNE 2002



**TYPICAL CHARACTERISTICS** 

Figure 13



SLLS206H - MAY 1995 - REVISED JUNE 2002

#### **APPLICATION INFORMATION**

Diodes placed in series with the  $V_{DD}$  and  $V_{SS}$  leads protect the GD65232 and GD75232 in the fault condition in which the device outputs are shorted to  $\pm 15$  V and the power supplies are at low and provide low-impedance paths to ground (see Figure 15).

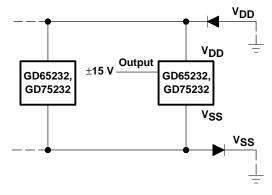



Figure 15. Power-Supply Protection to Meet Power-Off Fault Conditions of TIA/EIA-232-F

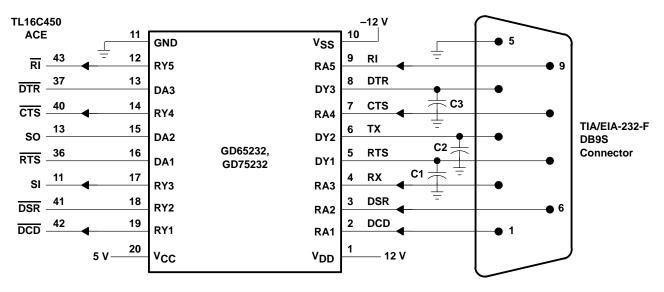



Figure 16. Typical Connection



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.